Texas State-wide Survey of Learning Styles for and Awareness of Texas A&M AgriLife Extension Service Programming

Scott Cummings, Dr.P.H.
Darrell Dromgoole, Ed.D.
Stacey S. Dewald, Ph.D.
Randy S. Lund, M.S.

Evolution of Extension Programming

Iowa State University (n.d.)

Fannin (2014)

Dewald (2018)

Introduction

- Changes in society cause Extension to revise program delivery methods (G. Davis, 2006)
- Extension educators use various methods, all which have advantages and limitations (Seevers & Graham, 2012)
- We must understand how our clientele prefer to learn and deliver programs accordingly

Purpose & Research Questions

- Purpose: to identify Texas residents' preferred learning style and awareness of Texas A&M AgriLife Extension.
- Research questions:
 - RQ 1: What are participants' demographic information (i.e., gender, ethnicity, educational level, year of birth, and zip code)?
 - RQ 2: Are there statistical differences between demographic categories and on participants' preferred learning styles when learning a new skill or practice?
 - RQ 3: Are there statistical differences between demographic categories on participants' educational programming preferences?
 - RQ 4: Are there statistical differences between demographic categories on participants' preference to be informed of educational programming?
 - RQ 5: What is respondents' awareness of and participation in educational programing of Texas A&M AgriLife Extension Service?

Method

- A 12-question survey was developed in Qualtrics by Texas A&M AgriLife Extension Service personnel
- Administered by the Qualtrics Research
- Available for 14 days, beginning March 11, 2019
- Reminder emails were sent and sent survey to areas of the state where there was limited representation
- Analyzed by Randy Lund, M.S. using SPSS; descriptive and chi-square

Total Participants

N = 2,803

Female

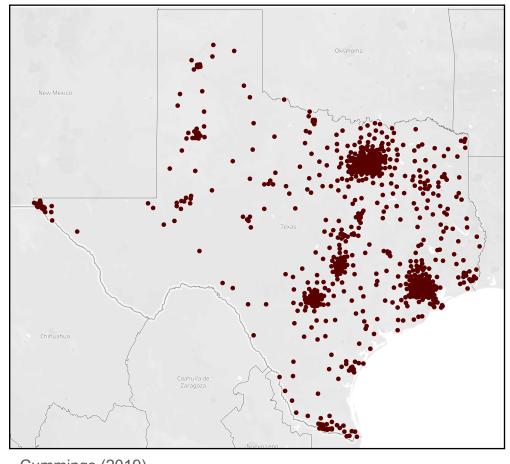
52.4% (*f* = 1,223)

White

61.6% (*f* = 1,473)

Some College or Associates Degree

39.5% (*f* = 838)



Millennials

44.4% (*f* = 1,166)

Location (zip code) of participants

Overall Preferred Learning Style

Means and Standard Deviations of Respondents' Preferred Method of Learning a New Skill or Practice (n = 2.682)

- Skill 61 1 140ti06 (11 - 2;002)		
Preferred Method of Learning	М	SD
Someone teaches one on one	4.21	0.96
Physically trying skill or practice	4.02	1.01
Watching an online video	3.96	0.97
Gathering own information	3.73	1.02
Attending a workshop	3.71	1.07
Watching a television show	3.63	1.06
Attending a field day/tour or demonstration	3.61	1.09
Viewing social media	3.25	1.22
Reading a newsletter, publication, books/manuals	3.24	1.17
Listening to radio or Podcast	2.89	1.20

Note. \leq 1.50 = definitely not; 1.51 – 2.49 = probably not; 2.50 – 3.49 = might or might not; 3.50 – 4.49 = probably yes; 4.50 \leq = definitely yes

Someone teach me one-on-one

Educational categories ($X^2(16, N = 2,332) = 65.71, p = .001$) Less than a high school education were considerably less favorable

Physically trying the skill on my own

Educational categories ($X^2(16, N = 2,332) = 57.92, p = .001$) Less than a high school education were less favorable

Generational categories ($X^2(12, N = 2,629) = 50.89, p = .001$) The **Greatest and Silent** generations were considerably **less favorable**

Watching an online video

Generational categories ($X^2(12, N = 2,629) = 54.54, p = .001$). Millennial, Generation X, and Generation Z are more favorable

Ethnicity categories ($X^2(16, N = 2,682) = 69.19, p = .001$). Black, Asian, and Hispanic ethnicities were more favorable

Educational categories ($X^2(16, N = 2,332) = 47.31, p = .001$). Less than a high school education were less favorable

Overall Educational Program Preferences

Means and Standard Deviations of Respondents' Educational Program Preferences (n = 2,645)

Preferred Method of Learning	М	SD
Want the meeting to be free of cost to attend	4.07	0.97
Like an incentive to attend	3.44	1.10
Travel 20 miles from home/work	3.36	1.20
Pay a fee to attend	3.07	1.09
Need continuing education credits (CEUs) or certificate to attend	2.88	1.23

Note. \leq 1.50 = definitely not; 1.51 – 2.49 = probably not; 2.50 – 3.49 = might or might not; 3.50 – 4.49 = probably yes; 4.50 \leq = definitely yes

Want the meeting to be free of cost to attend

Educational categories ($X^2(16, N = 2,332) = 53.43, p = .001$). At least a high school diploma were more favorable

Ethnicity categories ($X^2(16, N = 2,645) = 32.98, p = .007$).

Asian ethnicity participants were more favorable

Would like an incentive to attend

Ethnicity categories ($X^2(16, N = 2,645) = 53.51, p = .001$). **Asian** ethnicity participants were considerably **more favorable**

Generational categories ($X^2(12, N = 2,629) = 52.63, p = .001$). Millennial and Generation X generations were more favorable

Would travel 20 miles from home or work

Educational categories ($X^2(16, N = 2,332) = 53.35, p = .001$). **At least a Bachelor's Degree** were generally **more favorable**

Generational categories ($X^2(12, N = 2,629) = 24.72, p = .016$). Greatest and Silent generations were slightly less favorable

Overall Preferences for being Informed of Educational Programs

Means and Standard Deviations of how Respondents Would like to be Informed of Educational Programs (n = 2,645)

Educational Program Preferences	М	SD
Email	3.78	1.13
Friend or Neighbor	3.45	1.11
Mail	3.35	1.24
Mass Media	3.21	1.16
Social Media	3.07	1.30

Note. ≤ 1.50 = definitely not; 1.51 - 2.49 = probably not; 2.50 - 3.49 = might or might not; 3.50 - 4.49 = probably yes; $4.50 \leq$ = definitely yes

Email

Educational categories (X^2 (16, N = 3,332) = 72.38, p = .001). **Less than a high school diploma** are considerably **less favorable**

Ethnicity categories ($X^2(16, N = 2,645) = 54.99, p = .001$).

Asian ethnicity participants were more favorable

Generational categories ($X^2(12, N = 2,645) = 37.29, p = .001$). **Millennial and Generation Z** groups were **more favorable**

Ethnicity categories (X^2 (16, N = 2,645) = 37.29, p = .002). **Asian and Black** participants were **more favorable**

Generational categories ($X^2(12, N = 2,629) = 50.88, p = .001$). **Greatest and Silent** Generations were **more favorable**

Ethnicity categories ($X^2(16, N = 2,645) = 37.81, p = .002$). **Asian** participants were **more favorable**

Awareness of Texas A&M AgriLife Extension Service (n = 2,639)

Participation in Educational Programs of Texas A&M AgriLife Extension Service (n = 838)

Conclusions

- A higher mean preference for participants who prefer one-on-one learning, and the only statistical difference between categories was that of education
- Younger generations were more favorable of watching online videos
- Older generations were less favorable of traveling more than 20 miles to attend an educational program
- Millennial and Generation Z categories, and Asian and Black ethnicity participants were more favorable of learning about educational programming through friends or neighbors
- Rural, suburban, urban participants showed very few statistical differences among any questions assessed

Recommendations

- Majority of people who are not aware of AgriLife nor have participated in programs or received material
- Extension educator must think about what content is being taught, the target audience demographic, and use the best method of delivering the content via their preferred learning style
- Develop a user-friendly or engaging resource for Extension Educators
- Use of Qualtrics Research Service was effective, but had some drawbacks

References

- Cummings, S. (2019). Map of Texas-wide survey participant locations [digital map].
- Davis, J. (2014). Extension Clientele Preferences: Accessing Research-Based Information Online. *Journal of Extension [On-line]*, *52*(5) Article 5RIB2. Available at: https://joe.org/joe/2014october/rb2.php
- Davis, G. (2006). Avoiding the "rut" in program development and delivery: Improving our understanding of learning style preferences, *Journal of Extension [On-line]*, 44(4) Article 4RIB1. Available at: http://www.joe.org/joe/2006august/rb1.php
- Dewald, S. S. (2018, October 11). Elements of program evaluation [digital image] Retrieved from http://od.tamu.edu/podcast-season-1-episode-1/
- Fannin, B. (2014, June 17). *Dr. Paul Baumann, Texas A&M AgriLife Extension Service state weed specialist, discussing strategies at the 51st Stiles Farm Field Day* [digital image]. Retrieved from https://www.flickr.com/photos/agrilifetoday/ 14496659432/in/album-72157645409010788/
- Franz, K., Piercy, F., Donaldson, J., Westbrook, J., & Richard, R. (2010). Farmer, Agent, and Specialist Perspectives on Preferences for Learning among Today's Farmers. *Journal of Extension [On-line].* 48 (3) Article 3RIB. Available at: https://www.joe.org/joe/2010june/rb1.php
- lowa State University. (n.d.). ISU extension and outreach [digital image]. Retrieved from https://digitalcollections.lib.iastate.edu/sites/default/files/images/extension/Reflections%20of%20ISU%2 OExtension%20banner%204-1.jpg
- Seevers, B., & Graham, D. (2012). Education through Cooperative Extension. (3rd ed.). Fayetteville, AR: University of Arkansas Bookstore.

Questions?

